Abstract

Cybercriminals are becoming increasingly intelligent and aggressive, making them more adept at covering their tracks, and the global epidemic of cybercrime necessitates significant efforts to enhance cybersecurity in a realistic way. The COVID-19 pandemic has accelerated the cybercrime threat landscape. Cybercrime has a significant impact on the gross domestic product (GDP) of every targeted country. It encompasses a broad spectrum of offenses committed online, including hacking; sensitive information theft; phishing; online fraud; modern malware distribution; cyberbullying; cyber espionage; and notably, cyberattacks orchestrated by botnets. This study provides a new collaborative deep learning approach based on unsupervised long short-term memory (LSTM) and supervised convolutional neural network (CNN) models for the early identification and detection of botnet attacks. The proposed work is evaluated using the CTU-13 and IoT-23 datasets. The experimental results demonstrate that the proposed method achieves superior performance, obtaining a very satisfactory success rate (over 98.7%) and a false positive rate of 0.04%. The study facilitates and improves the understanding of cyber threat intelligence, identifies emerging forms of botnet attacks, and enhances forensic investigation procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.