Abstract

Rice seedling classification using an unmanned aerial vehicle (UAV) images remains a challenging problem that needs to be addressed. It is still a difficult task because it is prone to low temporal and spatial resolution images. Recently, machine learning (ML) and deep learning (DL) models can be employed for several image preprocessing tasks such as classification, object detection, and segmentation. Therefore, this study focuses on the design of shark smell optimization with deep learning based rice seedling detection (SSODL-RSD) on UAV imagery. The presented SSODL-RSD technique recognizes the UAV images into arable land and rice seedlings. To achieve this, the SSODL-RSD technique employs the adaptive Wiener filtering (AWF) technique for the noise removal procedure. In addition, the SSODL-RSD technique exploits the NestNet feature extractor model. Moreover, the SSO algorithm is used for the hyperparameter tuning of the NestNet model. Finally, the long short term memory-recurrent neural network (LSTM-RNN) model is employed for the classification of rice seedlings. The extensive comparative study highlighted the improved outcomes of the SSODL-RSD technique over other existing models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call