Abstract
An unmanned aerial vehicle (UAV) image recognition system in real-time is proposed in this study. To begin, the you only look once (YOLO) detector has been retrained to better recognize objects in UAV photographs. The trained YOLO detector makes a trade-off between speed and precision in object recognition and localization to account for four typical moving entities caught by UAVs (cars, buses, trucks, and people). An additional 1500 UAV photographs captured by the embedded UAV camera are fed into the YOLO, which uses those probabilities to estimate the bounding box for the entire image. When it comes to object detection, the YOLO competes with other deep-learning frameworks such as the faster region convolutional neural network. The proposed system is tested on a wild test set of 1500 UAV photographs with graphics processing unit GPU acceleration, proving that it can distinguish objects in UAV images effectively and consistently in real-time at a detection speed of 60 frames per second.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of Electrical Engineering and Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.