Abstract
Target tracking based on unmanned aerial vehicle (UAV) video is a significant technique in intelligent urban surveillance systems for smart city applications, such as smart transportation, road traffic monitoring, inspection of stolen vehicle, etc. In this paper, a computer vision-based target tracking algorithm aiming at locating UAV-captured targets, like pedestrian and vehicle, is proposed using sparse representation theory. First of all, each target candidate is sparsely represented in the subspace spanned by a joint dictionary. Then, the sparse representation coefficient is further constrained by an $L_{2}$ regularization based on temporal consistency. To cope with the partial occlusion appearing in UAV videos, a Markov random field (MRF)-based binary support vector with contiguous occlusion constraint is introduced to our sparse representation model. For long-term tracking, the particle filter framework along with a dynamic template update scheme is designed. Both qualitative and quantitative experiments implemented on visible (Vis) and infrared (IR) UAV videos prove that the presented tracker can achieve better performances in terms of precision rate and success rate when compared with other state-of-the-art trackers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.