Abstract

The purpose of the study is to survey the magnetic field induction on the Romashkinskoye oil field (Republic of Tatarstan, Russia) using an unmanned aerial vehicle over the profile of 68 km 320 m. A DJI Matric 600Pro electric hexacopter was used as an unmanned aerial vehicle. The survey scheme was as follows: the mission route consisted of three parallel flights (main profiles) and one crossing flight (transverse profile). The distance between adjacent parallel flights was 100 m. The intersecting profile was necessary to connect the main profiles. The flight assignments of each field day were built to overlap the profiles by at least 100 m by the nearby flights and make the flight trajectory coincide with the one of the previous flight. To optimize the process one takeoff / landing point was selected for two nearby flights. During one 20-25 min survey the maximum profile covered by the unmanned aerial vehicle was 1.25 km. The maximum flight distance (from the takeoff moment to the landing) did not exceed 6–6.5 linear kilometers. The methodology considered in the article made it possible to cover 45 linear kilometers over a long span even in adverse weather conditions (rain and wind gusts of 8–12 m/s). The resulting root mean square error for this survey was ±4.7 nT. The survey conducted allowed to obtain 3 profiles with the magnetic field induction magnitude over an extended section. A good correlation was registered between the aeromagnetic survey and the data on the block structure of the basement (according to geomorphological analysis data) with the local component of the crystalline basement. Altunino-Shunak fault has clearly manifested itself in the magnetic field as a positive anomaly with an amplitude of ≈60 nT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.