Abstract
Heteroatom doping has emerged as a highly effective strategy to enhance the activity of metal-based electrocatalysts toward the oxygen evolution reaction (OER). It is widely accepted that the doping does not switch the OER mechanism from the adsorbate evolution mechanism (AEM) to the lattice-oxygen-mediated mechanism (LOM), and the enhanced activity is attributed to the optimized binding energies toward oxygen intermediates. However, this seems inconsistent with the fact that the overpotential of doped OER electrocatalysts (< 300 mV) is considerably smaller than the limit of AEM (> 370 mV). To determine the origin of this inconsistency, we select phosphorus (P)-doped nickel-iron mixed oxides as the model electrocatalysts and observe that the doping enhances the covalency of the metal-oxygen bonds to drive the OER pathway transition from the AEM to the LOM, thereby breaking the adsorption linear relation between *OH and *OOH in the AEM. Consequently, the obtained P-doped oxides display a small overpotential of 237 mV at 10 mA cm-2. Beyond P, the similar pathway transition is also observed on the sulfur doping. These findings offer new insights into the substantially enhanced OER activity originating from heteroatom doping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.