Abstract

Siderophores are small molecule iron chelators. The entomopathogenic fungus Beauveria bassiana produces a plethora of siderophores under iron-limiting conditions. In this study, a siderophore biosynthesis pathway, akin to the general pathway observed in filamentous fungi, was revealed in B. bassiana. Among the siderophore biosynthesis genes (SID), BbSidA was required for the production of most siderophores, and the SidC and SidD biosynthesis gene clusters were indispensable for the production of ferricrocin and fusarinine C, respectively. Biosynthesis genes play various roles in siderophore production, vegetative growth, stress resistance, development, and virulence, in which BbSidA plays the most important role. Accordingly, B. bassiana employs a cocktail of siderophores for iron metabolism, which is essential for fungal physiology and host interactions. This study provides the initial network for the genetic modification of siderophore biosynthesis, which not only aims to improve the efficacy of biocontrol agents but also ensures the efficient production of siderophores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.