Abstract

The drug discovery process is a rigorous and time-consuming endeavor, typically requiring several years of extensive research and development. Although classical machine learning (ML) has proven successful in this field, its computational demands in terms of speed and resources are significant. In recent years, researchers have sought to explore the potential benefits of quantum computing (QC) in the context of machine learning (ML), leading to the emergence of quantum machine learning (QML) as a distinct research field. The objective of the current study is twofold: first, to present a review of the proposed QML algorithms for application in the drug discovery pipeline, and second, to compare QML algorithms with their classical and hybrid counterparts in terms of their efficiency. A query-based search of various databases took place, and five different categories of algorithms were identified in which QML was implemented. The majority of QML applications in drug discovery are primarily focused on the initial stages of the drug discovery pipeline, particularly with regard to the identification of novel drug-like molecules. Comparison results revealed that QML algorithms are strong rivals to the classical ones, and a hybrid solution is the recommended approach at present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.