Abstract

In the field of catalytic asymmetric synthesis, the less-treated path lies in oxidative catalytic asymmetric transformations. The hurdles of pinpointing the appropriate chemical oxidants and addressing their compatibility issues with catalysts and functionalities present significant challenges. Organic electrochemistry, employing traceless electrons for redox reactions, is underscored as a promising solution. However, the commonly used electrolysis in batch cells introduces its own set of challenges, hindering the advancement of electrochemical asymmetric catalysis. Here we introduce a microfluidic electrochemistry platform with single-pass continuous flow reactors that exhibits a wide-ranging applicability to various oxidative asymmetric catalytic transformations. This is exemplified through the sulfenylation of 1,3-dicarbonyls, dehydrogenative C-C coupling, and dehydrogenative alkene annulation processes. The unique properties of microfluidic electrochemical reactors not only eliminate the need for chemical oxidants but also enhance reaction efficiency and reduce the use of additives and electrolytes. These salient features of microfluidic electrochemistry expedite the discovery and development of oxidative asymmetric transformations. In addition, the continuous production facilitated by parallel single-pass reactors ensures straightforward reaction upscaling, removing the necessity for reoptimization across various scales, as evidenced by direct translation from milligram screening to hectogram asymmetric synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.