Abstract
Aqueous ammonium-ion batteries are promising candidates for grid-scale energy storage owing to their non-flammability, eco-friendliness, and low-cost. Nevertheless, their further development suffers from electrolyte/electrode instability and limited energy density. Herein, we develop an aqueous ammonium-bromine/ion battery composed of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) organic materials as the anode, Br2/Br− redox couple as the cathode, and ionic liquid-functionalized aqueous solution as the electrolyte. The experimental investigation and theoretical calculation results reveal that two organic cations (TPA+ and BMIM+) in the functionalized electrolyte can insert into the PTCDA anode with different intercalation chemistry, which enhances the reversibility of NH4+ storage. Furthermore, organic cations not only construct a hydrophobic interfacial layer to expel water molecules from the anode surface, but also stabilize the active species at the cathode side by forming a solid complexation phase. Consequently, the as-developed aqueous ammonium-bromine/ion batteries present satisfactory electrochemical performance at both room temperature and low temperature, which promotes its potential application in grid-scale energy storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.