Abstract

In recent years, large language models (LLMs) have revolutionized natural language processing (NLP) with their transformative architectures and sophisticated training techniques. This paper provides a comprehensive overview of LLMs, focusing on their architecture, training methodologies, and diverse applications. We delve into the transformer architecture, attention mechanisms, and parameter tuning strategies that underpin LLMs' capabilities. Furthermore, we explore training techniques such as self-supervised learning, transfer learning, and curriculum learning, highlighting their roles in empowering LLMs with linguistic proficiency. Additionally, we discuss the wide-ranging applications of LLMs, including text generation, sentiment analysis, and question answering, showcasing their versatility and impact across various domains. Through this comprehensive examination, we aim to elucidate the advancements and potentials of LLMs in shaping the future of natural language understanding and generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.