Abstract

The central nervous system relies heavily on neurotransmitters (NTMs), and NTM imbalances have been linked to a wide range of neurological conditions. Thus, the development of reliable detection techniques is essential for advancing brain studies. This review offers a comprehensive analysis of metal-organic frameworks (MOFs), transition metal oxides (TMOs), and MOFs-derived TMOs (MOFs/TMOs) as materials for electrochemical (EC) sensors targeting the detection of key NTMs, specifically dopamine (DA), epinephrine (EP), and serotonin (SR). The unique properties and diverse families of MOFs and TMOs, along with their nanostructured hybrids, are discussed in the context of EC sensing. The review also addresses the challenges in detecting NTMs and proposes a systematic approach to tackle these obstacles. Despite the vast amount of research on MOFs and TMOs-based EC sensors for DA detection, the review highlights the gaps in the literature for MOFs/TMOs-based EC sensors specifically for EP and SR detection, as well as the limited research on microneedles (MNs)-based EC sensors modified with MOFs, TMOs, and MOFs/TMOs for NTMs detection. This review serves as a foundation to encourage researchers to further explore the potential applications of MOFs, TMOs, and MOFs/TMOs-based EC sensors in the context of neurological disorders and other health conditions related to NTMs imbalances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call