Abstract

Adequate characterization of depositional architecture is of great importance when studying fluvial outcrops as reservoir analogs. The complex three-dimensional (3D) distribution and lateral and vertical relationships of sandstone bodies require a high degree of stratigraphic control in order to make a proper assessment of the distribution and connectivity of the reservoir facies. This assessment demands the use of reliable correlation datums. Unfortunately, clear marker beds (e.g., ash layers, coal beds, and paleosols) are not always available in fluvial outcrops, and when present, they are often covered by vegetation or debris that prevents their tracking over long distances. A new method to achieve highly accurate and semiautomatic correlations within fluvial digital outcrop models (DOMs) is presented in response to the need for further correlation procedures, especially in the absence of suitable datums. The method is based on the hypothesis that the average depositional paleosurface of a sedimentary system can be represented by a plane at outcrop scale. If this assumption is valid, this plane can be used as a virtual datum to identify along the DOM the sediments that were deposited simultaneously. The method was tested and applied successfully within two kilometer-scale outcrops of the Huesca fluvial fan (Early Miocene, northern Spain), where the virtual datum provided accurate correlations regardless of stratigraphic or topographical complexities. Moreover, all the sedimentary successions of the outcrops could be automatically subdivided into the desired stratigraphic intervals by only moving the virtual datum vertically. These intervals can be subsequently isolated to facilitate the detection of subtle variations and trends of their fluvial properties. Consequently, a virtual datum is the equivalent of having a marker bed crossing the stratigraphic succession of an outcrop at any desired position. The advantages provided by a virtual datum prove to be especially useful in large and topographically complex outcrops that previously could not have been studied with such a high degree of 3D stratigraphic control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.