Abstract

AbstractAsymmetric hydrogenation (AH) of tetrasubstituted olefins generating two stereocenters is still an open topic. There are only a few reports on the AH of tetrasubstituted olefins with conjugated functional groups, while this process can create useful intermediates for the subsequent elaboration of relevant end products. Most of the tetrasubstituted olefins successfully submitted to AH belong to a small number of functional classes; remarkably, the AH of tetrasubstituted acyclic enones still represents an unsolved challenge. Herein, we disclose a class of air‐stable Ir−P,N catalysts, prepared in three steps from commercially available amino alcohols, that can hydrogenate, in minutes, a wide range of electronically and sterically diverse acyclic tetrasubstituted enones (including exocyclic ones) with high yields and high enantioselectivities. The factors responsible for the excellent selectivities were elucidated by combining deuterogenation experiments and theoretical calculations. The calculations indicated that the reduction follows an IrI/IrIII mechanism, in which enantioselectivity is controlled in the first migratory insertion of the hydride to the most electrophilic olefinic Cβ and the formation of the hydrogenated product via reductive elimination takes place prior to the coordination of dihydrogen and the subsequent oxidative addition. The potential of the new catalytic systems is demonstrated by the derivatization of hydrogenation products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call