Abstract

The key to rationally and rapidly designing high‐performance materials is the monitoring and comprehension of dynamic processes within individual particles in real‐time, particularly to gain insight into the anisotropy of nanoparticles. The intrinsic property of nanoparticles typically varies from one crystal facet to the next under realistic working conditions. Here, we introduce the operando collision electrochemistry to resolve the single silver nanoprisms (Ag NPs) anisotropy in photoelectrochemistry. We directly identify the effect of anisotropy on the plasmonic‐assisted electrochemistry at the single NP/electrolyte interface. The statistical collision frequency shows that heterogeneous diffusion coefficient among crystal facets facilitates Ag NPs to undergo direction‐dependent mass transfer toward the gold ultramicroelectrode. Subsequently, the current amplitudes of transient events indicate that anisotropy enables variations in dynamic interfacial electron transfer behaviors during photothermal processes. The results presented here demonstrate that the measurement precision of collision electrochemistry can be extended to the sub‐nanoparticle level, highlighting the potential for high‐throughput material screening with comprehensive kinetics information at the nanoscale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call