Abstract

The current study analyzed the high heating values (HHVs) of various waste biomass materials intending to the effective management and more sustainable consumption of waste as clean energy source. Various biomass waste samples including date leaves, date branches, coconut leaves, grass, cooked macaroni, salad, fruit and vegetable peels, vegetable scraps, cooked food waste, paper waste, tea waste, and cardboard were characterized for proximate analysis. The results revealed that all the waste biomass were rich in organic matter (OM). The total OM for all waste biomass ranged from 79.39% to 98.17%. Likewise, the results showed that all the waste biomass resulted in lower ash content and high fixed carbon content associated with high fuel quality. Based on proximate analysis, various empirical equations (HHV=28.296-0.2887(A)-656.2/VM, HHV=18.297-0.4128(A)+35.8/FC and HHV=22.3418-0.1136(FC)-0.3983(A)) have been tested to predict HHVs. It was observed that the heterogeneous nature of various biomass waste considerably affects the HHVs and hence has different fuel characteristics. Similarly, the HHVs of waste biomass were also determined experimentally using the bomb calorimeter, and it was observed that among all the selected waste biomass, the highest HHVs (21.19 MJ kg−1) resulted in cooked food waste followed by cooked macaroni (20.25 MJ kg−1). The comparison revealed that experimental HHVs for the selected waste biomass were slightly deviated from the predicted HHVs. Based on HHVs, various thermochemical and biochemical technologies were critically overviewed to assess the suitability of waste biomass to energy products. It has been emphasized that valorizing waste-to-energy technologies provides the dual benefits of sustainable management and production of cleaner energy to reduce fossil fuels dependency. However, the key bottleneck in commercializing waste-to-energy systems requires proper waste collection, sorting, and continuous feedstock supply. Moreover, related stakeholders should be involved in designing and executing the decision-making process to facilitate the global recognition of waste biorefinery concept.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call