Abstract

Proficiency and organization of the genetic variability in cultivated and wild relatives are pivotal for a particular crop improvement program. In the present scenario there has been noteworthy improvement in the development of novel genetic tools such as DNA or molecular markers and genetic maps profiling techniques. In this study, seven chickpea (Cicer arietinum L.) genotypes including some cultivars were considered (Collection Id of the seven genotypes are TZCP-1, TZCP-2, TZCP-3, TZCP-4, TZCP-5, TZCP-6 and TZCP-7). The experiment was conducted out in Random Complete Block Design (RCBD) having three replications. All the quantitative characters were collected for assessing the diversity and to find key characters in chickpea cultivars. The statistical analysis was done for all the quantitative character (viz. plant height, number of branches per plant, number of pod per plant, number of seeds per pod, test weight, seed length, seed width, days to 50% flowering, days to 50% maturity and grain yield). Analysis of variance divulged significant differences among the genotypes for all the 10 characters. An extensive range of diversity was displayed by most of the characters under study. The magnitude of phenotypic coefficient of variation (1.23% - 33.71%) in the present study was slightly wider than genotypic coefficient of variation (1.13% - 33.02%) suggesting that environmental factors have high contribution to the observed variation among chickpea accessions. The first four PC axes from the principal component analysis accounted for 91.63% of the multivariate variation among entries indicating a moderate degree of correlation among characters for these entries. The genotypic data generated through RAPD profiling of seven chickpea genotypes were used to study genetic diversity or interrelationship. The pair wise Jaccard’s similarity coefficient ranged from 0.47 (TZCP-3 and TZCP-5) to 0.87 (TZCP-2 and TZCP-4). Finally, this research work helped with the analysis of genetic diversity in chickpea by using different approaches such as morphological and molecular marker system.

Highlights

  • Chickpea (Cicer arietinum L.) is the fourth most imperative grain legume crop subsequently following soybean, bean, and pea, but the crop contributes only 3.1% to the world grain legumes production1

  • The genotypic data generated through RAPD profiling of seven chickpea genotypes were used to study genetic diversity or interrelationship

  • This research work helped with the analysis of genetic diversity in chickpea by using different approaches such as morphological and molecular marker system

Read more

Summary

Introduction

Chickpea (Cicer arietinum L.) is the fourth most imperative grain legume crop subsequently following soybean, bean, and pea, but the crop contributes only 3.1% to the world grain legumes production1. Unlocking Genetic Diversity in Selected Chickpea Genotypes using Morphological and Molecular Markers The genotypic data generated through RAPD profiling of seven chickpea genotypes were used to study genetic diversity or interrelationship.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call