Abstract

Metal-organic frameworks (MOFs) show wide application as the cathode of aqueous zinc-ion batteries (AZIBs) in the future owning to their high porosity, diverse structures, abundant species, and controllable morphology. However, the low energy density and poor cycling stability hinder the feasibility in practical application. Herein, an innovative strategy of organic/inorganic double electroactive sites is proposed and demonstrated to obtain extra capacity and enhance the energy density in a manganese-based metal-organic framework (Mn-MOF-74). Simultaneously, its energy storage mechanism is systematically investigated. Moreover, profiting from the coordination effect, the Mn-MOF-74 features with stable structure in ZnSO4 electrolyte. Therefore, the Zn/Mn-MOF-74 batteries exhibit a high energy density and superior cycling stability. This work aids in the future development of MOFs in AZIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call