Abstract

BackgroundHeart failure (HF) is characterized by oxidative stress and mitochondrial dysfunction. This study investigates the therapeutic potential of Necrostatin-1 (Nec-1) delivered through exosomes derived from induced pluripotent stem cells (iPSCs) to address these pathologies in HF.MethodsAn HF rat model was established, and comprehensive assessments were performed using echocardiography, hemodynamics, and ventricular mass index measurements. iPSCs were used to isolate exosomes, loaded with Nec-1, and characterized for efficient delivery into cardiomyocytes. The interaction between Nec-1-loaded exosomes (Nec-1-Exos), poly (ADP-ribose) polymerase 1 (PARP1), and apoptosis-inducing factor mitochondria-associated 1 (AIFM1) was explored. Gain-of-function experiments assessed changes in cardiomyocyte parameters, and histological analyses were conducted on myocardial tissues.ResultsCardiomyocytes successfully internalized Nec-1-loaded exosomes, leading to downregulation of PARP1, inhibition of AIFM1 nuclear translocation, increased ATP and superoxide dismutase levels, reduced reactive oxygen species and malonaldehyde levels, and restored mitochondrial membrane potential. Histological examinations confirmed the modulation of the PARP1/AIFM1 axis by Nec-1, mitigating HF.ConclusionsiPSC-derived exosomes carrying Nec-1 attenuate oxidative stress and mitochondrial dysfunction in HF by targeting the PARP1/AIFM1 axis. This study proposes a promising therapeutic strategy for HF management and highlights the potential of exosome-mediated drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.