Abstract

Urban green roofs have emerged as a significant trend in urban architecture worldwide, offering numerous benefits, including enhanced energy performance, improved urban microclimate, and public health. This study proposes a holistic framework for assessing the green roofs' energy-saving potential at the city scale, achieved by scaling up building-scale energy simulations to city-scale energy demands. Firstly, massive building information is collected using Geometric Information System (GIS) technologies. Subsequently, prototype buildings are generated to accurately represent the geometric characteristics of buildings at the city scale. Building performance simulation is further conducted considering three types of plants on roofs. A case study in Xiamen, China, demonstrates the effectiveness of the proposed framework to efficiently quantify the city-scale energy-saving potential of green roofs. By implementing green roofs in Xiamen, energy savings of 1.62–1.83% and peak load shaving of 1.10–1.63% can be achieved for the whole city. Overall, the proposed framework has the potential for widespread application in other cities with minor adjustments to accommodate variations in climate and building parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.