Abstract

Periodontitis (PD), a chronic infectious inflammatory disease initiated by bacteria, is associated with several local contributing factors including occlusal trauma. Previous studies have found that the traumatic occlusal force could aggravate alveolar bone loss during PD. However, the effect of reduced occlusal force during PD remains unclear. This study aimed to explore the effect of occlusal force unloading on PD onset and progression and its underlying mechanism as an effort to provide restoration suggestions for PD patients with dentition defect in clinic. This study might also propose occlusal force unloading could be a new local contributing factor for PD. C57BL/6 mice were used to establish a PD model by the ligation of 5-0 silk around the mandibular left first molar (PD group) and an unloading experiment model by the extraction of their left maxillary first molar (EX group). The THP-1-derived macrophages were used to verify in vivo results. Micro-CT scanning and H&E staining results consistently showed that PD + EX group experienced the most severe alveolar bone resorption as compared to PD group and control group. Further RNA-sequencing analysis suggested that occlusal force unloading significantly enhanced osteoclastic resorption, inhibited osteoblastic activity, and promotes M1 and M2 macrophages polarization. Immunofluorescence staining (IF) results showed that compared with the PD group, PD + EX group significantly increased the ratio of M1/M2 polarization. Similar results were observed by RT-qPCR and IF in vitro: removal of compressive force led to an increased ratio of M1/M2 polarization in LPS-stimulated THP-1-derived macrophages. Our study demonstrated that occlusal force unloading aggravates bone resorption by increasing the ratio of M1/M2 macrophages polarization during PD, suggesting a previously unknown local contributing factor for PD, and providinga novel insight for dentists to restore missing teeth as an effort to maintain remaining dentition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call