Abstract

Chlorpyrifos (CP) is an extensively used organophosphate (OP) pesticide that inhibits the biogeochemical cycle with subsequent loss of soil fertility. In this view, indigenous soil bacteria with significant CP degradation capacity were identified as Pseudomonas aeruginosa RNC3 and Stenotrophomonas maltophilia RNC7 through 16 S rRNA. The optimum values of independent variables for CP degradation were found to be 30 ℃, pH 7, 100 mgL−1 of CP, and 1 OD600 cell culture. RNC3 and RNC7 showed 82.5 mgL−1 and 77.1 mgL−1 CP degradation within 5 days. A Michaelis-Menten kinetic model estimated the degradation rate (Vmax) and substrate binding affinity (Ks) for RNC3 were 1.23 mgL−1h−1 and 123 mgL−1 whereas for RNC7 as 1.19 mgL−1h −1 and 124.3 mgL−1, respectively. The major metabolites 3,5,6-trichloro-2-pyridinol (TCP) and 2-hydroxy pyridine were identified during CP degradation by RNC3 whereas, only TCP by RNC7 using GC-MS. Key enzymes encoded by opd and opch2 genes were annotated in the genomes of RNC3 and RNC7 along with the set of putative degradation genes (tcp, yieH, pho, prp). Protein-ligand docking between OPCH2 and CP found − 7.9 kcal mol −1 as a high binding affinity with the conserved catalytic triad (Ser155-Asp251-His281) in the active site. The study suggests that RNC3 can completely mineralize CP, whereas both strains have shown robust degradation ability of OP group of pesticides. The potential of rapid acclimatization to natural soil environment and non-virulent nature of the selected strains are beneficial for in situ application. Thus, selected indigenous strains can be applied for the bioremediation of OP-contaminated soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.