Abstract

Following the global COVID-19 pandemic triggered by SARS-CoV-2, the need for rapid, specific and cost-effective point-of-care diagnostic solutions remains paramount. Even though COVID-19 is no longer a public health emergency, the disease still poses a global threat leading to deaths, and it continues to change with the risk of new variants emerging causing a new surge in cases and deaths. Here, we address the urgent need for rapid, cost-effective and point-of-care diagnostic solutions for SARS-CoV-2. We propose a multiplexed DNA-based sensing platform that utilizes inkjet-printed nanostructured gold electrodes and an inkjet-printed battery-free near-field communication (NFC) potentiostat for the simultaneous quantitative detection of two SARS-CoV-2 genes, the ORF1ab and the N gene. The detection strategy based on the formation of an RNA-DNA sandwich structure leads to a highly specific electrochemical output. The inkjet-printed nanostructured gold electrodes providing a large surface area enable efficient binding and increase the sensitivity. The inkjet-printed battery-free NFC potentiostat enables rapid measurements and real-time data analysis via a smartphone application, making the platform accessible and portable. With the advantages of speed (5 min), simplicity, sensitivity (low pM range, ∼450% signal gain) and cost-effectiveness, the proposed platform is a promising alternative for point-of-care diagnostics and high-throughput analysis that complements the COVID-19 diagnostic toolkit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.