Abstract

AbstractBei der Photokatalyse werden kleine organische Moleküle mithilfe von lichtempfindlichen Materialien, elektromagnetischer Strahlung und Elektronenvermittlern in gewünschte Produkte umgewandelt. Die Substitution von niedermolekularen Reagenzien durch redoxaktive Funktionsmaterialien kann den Nutzen der Photokatalyse über die organische Synthese und Umweltanwendungen hinaus erhöhen. Geleitet von den allgemeinen Prinzipien der Photokatalyse, entwarfen wir in der aktuellen Studie hybride Nanokomposite, die aus n‐Typ halbleitendem Kalium‐Poly(heptazinimid) (K‐PHI) und p‐Typ leitendem Poly(3,4‐ethylendioxythiophen) Polystyrolsulfonat (PEDOT:PSS) als redoxaktivem Substrat bestehen. Die elektrische Leitfähigkeit des hybriden Nanokomposits, das einen optimalen K‐PHI‐Gehalt aufweist, wird reversibel moduliert, indem eine Reihe von externen Stimuli kombiniert werden, die von sichtbarem Licht unter inerten Bedingungen bis hin zu dunklen Bedingungen unter einer O2‐Atmosphäre reichen. Die Verwendung eines leitfähigen Polymers als redoxaktives Substrat ermöglicht die Untersuchung der photokatalytischen Prozesse, die durch halbleitende Photokatalysatoren vermittelt werden, durch Messungen der elektrischen Leitfähigkeit.

Highlights

  • Semiconductor photocatalysis has been extensively studied in the area of water splitting,[1] conversion of CO2,[2] environmental applications,[3,4] and in the synthesis of fine organic molecules.[5,6] In all of these applications, the modus operandi involves the excitation of the semiconductor with a photon of sufficient energy followed by the quenching of the hole and electron with suitable electron donors and acceptors, C

  • For high-throughput tests a series of K-PHI:PEDOT:PSS blends with different content of K-PHI ranging from 0 to 77.6 wt % were prepared followed by drop casting them between two electrically isolated areas of FTO electrodes and drying in air (Supporting Information, Figures S1–S5)

  • Hybrid nanomaterials composed of K-PHI nanoparticles and the conductive PEDOT:PSS matrix were prepared by a straightforward method

Read more

Summary

Introduction

Semiconductor photocatalysis has been extensively studied in the area of water splitting,[1] conversion of CO2,[2] environmental applications,[3,4] and in the synthesis of fine organic molecules.[5,6] In all of these applications, the modus operandi involves the excitation of the semiconductor with a photon of sufficient energy followed by the quenching of the hole and electron with suitable electron donors and acceptors,. Angewandte Chemie International Edition published by Wiley-VCH GmbH. We integrate two materials, that is, p-type conductive polymer PEDOT:PSS, on one hand, and n-type visible-light responsive carbon nitride semiconductor (K-PHI), on the other hand, into a hybrid nanocomposite: K-PHI:PEDOT:PSS (Figure 1). K-PHI:PEDOT:PSS to visible light under O2-free conditions and to the dark under O2 conditions leads to the reversible doping of PEDOT:PSS that is registered as a change of the composite electrical conductivity. Instead of enabling a chemical reaction between small organic molecules, we use photocatalysis to tune the physicochemical properties of conductive polymers

Results and Discussion
Conclusion
Conflict of interest
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call