Abstract

An unknown input observer is to estimate the system state of a dynamic system subject to unknown input excitations. In this note, by assuming that at each time instant, the unknown input can be approximated by a polynomial over a local time interval, a finite-time observer is proposed to achieve approximate joint state and input estimation. Both the obtained state and input estimates are moving averages of the present and past output signals. The advantage of the proposed design is that it can be applied to non-minimum phase systems or systems with non-unity relative degree. Notice that most previous unknown input observer designs require the system to be minimum-phase and relative degree one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.