Abstract
This paper considers the observer design problem for one-sided Lipschitz nonlinear systems with unknown inputs. The systems under consideration are a larger class of nonlinearities than the well-studied Lipschitz systems and have inherent advantages with respect to conservativeness. For such systems, we first propose a full-order nonlinear unknown input observer (UIO) by using the linear matrix inequality (LMI) approach. Following a similar design procedure and using state transformation, the reduced-order nonlinear UIO is also constructed. Sufficient conditions to guarantee existence of full-order and reduced-order UIOs are established by carefully considering the one-sided Lipschitz condition together with the quadratic inner-bounded condition. Based on the matrix generalized inverse technique, the UIO conditions are formulated in terms of LMIs. Moreover, the proposed observers are applied to a single-link flexible joint robotic system with unknown inputs. Simulation results are finally given to illustrate the effectiveness of the proposed design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.