Abstract

This paper deals with unknown input interval observer synthesis for discrete-time switched systems. First, a decomposition leading to obtain a subsystem not affected by the unknown input is presented. Second, an interval observer is designed based on the Input-to-State Stability (ISS). The gains are computed by solving Linear Matrix Inequalities (LMI) formulated based on multiple quadratic Lyapunov functions under average dwell time switching signals. In addition, a change of coordinates can be taken in order to ensure the positivity of the estimation errors. Finally, an explicit expression for the unknown input bounds is derived. Note that while the additive disturbances and the measurement noises are unknown but assumed to be bounded with known bounds, the unknown input signals are neither bounded nor stochastic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.