Abstract

It is known that any surface knot can be transformed to an unknotted surface knot or a surface knot which has a diagram with no triple points by a finite number of 1-handle additions. The minimum number of such 1-handles is called the unknotting number or the triple point cancelling number, respectively. In this paper, we give upper bounds and lower bounds of unknotting numbers and triple point cancelling numbers of torus-covering knots, which are surface knots in the form of coverings over the standard torus T. Upper bounds are given by using m-charts on T presenting torus-covering knots, and lower bounds are given by using quandle colorings and quandle cocycle invariants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.