Abstract
AbstractThe University of Texas reported on a campaign to measure methane (CH4) emissions from United States natural gas (NG) production sites as part of an improved national inventory. Unfortunately, their study appears to have systematically underestimated emissions. They used the Bacharach Hi‐Flow® Sampler (BHFS) which in previous studies has been shown to exhibit sensor failures leading to underreporting of NG emissions. The data reported by the University of Texas study suggest their measurements exhibit this sensor failure, as shown by the paucity of high‐emitting observations when the wellhead gas composition was less than 91% CH4, where sensor failures are most likely; during follow‐up testing, the BHFS used in that study indeed exhibited sensor failure consistent with under‐reporting of these high emitters. Tracer ratio measurements made by the University of Texas at a subset of sites with low CH4 content further indicate that the BHFS measurements at these sites were too low by factors of three to five. Over 98% of the CH4 inventory calculated from their own data and 41% of their compiled national inventory may be affected by this measurement failure. Their data also indicate that this sensor failure could occur at NG compositions as high as 97% CH4, possibly affecting other BHFS measurement programs throughout the entire NG supply chain, including at transmission sites where the BHFS is used to report greenhouse gas emissions to the United States Environmental Protection Agency Greenhouse Gas Reporting Program (USEPA GHGRP, U.S. 40 CFR Part 98, Subpart W). The presence of such an obvious problem in this high profile, landmark study highlights the need for increased quality assurance in all greenhouse gas measurement programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.