Abstract

The ghost condensation of the early universe in a pre-big bang phase has been presented in this paper through duration of a non-singular bounce. The undergoing universe contracts and passes smoothly in an expanding universe via a post-big bang phase. Initially developing and then taming any ghost like instabilities, the Null Energy Condition (NEC) is explicitly violated through the curvature mechanism of an adiabatic perturbed metric. The vacuum state of the ongoing phase is stabilized via a Lagrangian that in essence stabilizes the vacuum state under the higher order derivatives. The violation of the NEC regards a catastrophic vacuum instability, which re-emerges with a correction valid at small energies and momenta, below the UV-cut-off scale that, could potentially be problematic if one tries to construct a UV-completed theory of this Ekpyrotic model. The scale-invariant curvature perturbation, that arises and is sourced out of the scale-invariant entropy perturbations sourced by 2-Ekpyrotic scalar fields, that, in contrast, becomes constant on the super-horizon limits, due to the non-singular nature of the background geometry. Apart, from the ghost condensates, this theory addresses the new Ekpyrotic theory which in order becomes a distinguishable alternative to inflation theory for the birth of the universe. As per the recent WMAP data, the Ekpyrotic model has a spectral red tilt that shows the bounced scalar potential falling through a negative phase shift during the matter-fluid fluctuations in the hot big bang phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call