Abstract

The efficient and reliable characterization of quantum states plays a vital role in most, if not all, quantum information processing tasks. In this work, we present a universally optimal protocol for verifying entangled states by employing the so-called quantum nondemolition measurements, such that the verification efficiency is equivalent to that of the optimal global strategy. Instead of being probabilistic as the standard verification strategies, our protocol is constructed sequentially, which is thus more favorable for experimental realizations. In addition, the target states are preserved in the protocol after each measurement, so can be reused in any subsequent tasks. We demonstrate the power of our protocol for the optimal verification of Bell states, arbitrary two-qubit pure states, and stabilizer states. We also prove that our protocol is able to perform tasks including fidelity estimation and state preparation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.