Abstract
We derive Einstein’s equations from a linear theory in flat space-time using free-field gauge invariance and universal coupling. The gravitational potential can be either covariant or contravariant and of almost any density weight. We adapt these results to yield universally coupled massive variants of Einstein’s equations, yielding two one-parameter families of distinct theories with spin 2 and spin 0. The Freund-Maheshwari-Schonberg theory is therefore not the unique universally coupled massive generalization of Einstein’s theory, although it is privileged in some respects. The theories we derive are a subset of those found by Ogievetsky and Polubarinov by other means. The question of positive energy, which continues to be discussed, might be addressed numerically in spherical symmetry. We briefly comment on the issue of causality with two observable metrics and the need for gauge freedom and address some criticisms by Padmanabhan of field derivations of Einstein-like equations along the way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.