Abstract

Supercritical fluid (SCF) is known to exhibit salient dynamic and thermodynamic crossovers and an inhomogeneous molecular distribution. However, the question as to what basic physics underlies these microscopic and macroscopic anomalies remains open. Here, using an order parameter extracted by machine learning, the fraction of gas-like (or liquid-like) molecules, we find simplicity and universality in SCF: First, all isotherms of a given fluid collapse onto a single master curve described by a scaling relation. The observed power law holds from the high-temperature and -pressure regime down to the critical point where it diverges. Second, phase diagrams of different compounds collapse onto their master curves by the same scaling exponent, thereby demonstrating a putative law of corresponding supercritical states in simple fluids. The reported results support a model of the SCF as a mixture of two interchangeable microstates, whose spatiotemporal dynamics gives rise to unique macroscopic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.