Abstract
In this paper we establish the existence of âalmost universalâ quaternionic power series and entire functions. Denoting by B(0, 1) the open unit ball in , this means that there exists a quaternionic power series with radius of convergence 1 such that, denoting by the nâth partial sum of S, for every , for every axially symmetric open subset Ω of containing K and every f slice regular on Ω, there exists a subsequence of the partial sums of S such that uniformly on K, as . The symbol denotes the set of axially symmetric compact sets in such that is connected for some . This is a slightly weaker property than the classical universal power series phenomenon obtained for analytic only on the interior of K and continuous on K. We also generalize a result originally proven by Birkhoff and finally we show that there exists an entire quaternionic function whose set of derivatives is dense in the class of entire quaternionic functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.