Abstract

We establish a canonical and unique tensor product for commutative monoids and groups in an infinity-category C which generalizes the ordinary tensor product of abelian groups. Using this tensor product we show that E_n-(semi)ring objects in C give rise to E_n-ring spectrum objects in C. In the case that C is the infinity-category of spaces this produces a multiplicative infinite loop space machine which can be applied to the algebraic K-theory of rings and ring spectra. The main tool we use to establish these results is the theory of smashing localizations of presentable infinity-categories. In particular, we identify preadditive and additive infinity-categories as the local objects for certain smashing localizations. A central theme is the stability of algebraic structures under basechange; for example, we show Ring(D \otimes C) = Ring(D) \otimes C. Lastly, we also consider these algebraic structures from the perspective of Lawvere algebraic theories in infinity-categories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.