Abstract

Abstract We consider a system of N parallel queues with identical exponential service rates and a single dispatcher where tasks arrive as a Poisson process. When a task arrives, the dispatcher always assigns it to an idle server, if there is any, and to a server with the shortest queue among d randomly selected servers otherwise (1≤d≤N). This load balancing scheme subsumes the so-called join-the-idle queue policy (d=1) and the celebrated join-the-shortest queue policy (d=N) as two crucial special cases. We develop a stochastic coupling construction to obtain the diffusion limit of the queue process in the Halfin‒Whitt heavy-traffic regime, and establish that it does not depend on the value of d, implying that assigning tasks to idle servers is sufficient for diffusion level optimality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.