Abstract

We study phase ordering kinetics in symmetric and asymmetric binary mixtures, undergoing an order-disorder transition below the critical temperature. Microscopically, we model the kinetics via the antiferromagnetic Ising model with Kawasaki spin-exchange kinetics. This conserves the composition while the order parameter (staggered magnetization) is not conserved. The order-parameter correlation function and structure factor show dynamical scaling, and the scaling functions are independent of the mixture composition. The average domain size shows a power-law growth: [Formula: see text]. The asymptotic growth regime has [Formula: see text], though there can be prolonged transients with [Formula: see text] for asymmetric mixtures. Our unambiguous observation of the asymptotic universal regime is facilitated by using an accelerated Monte Carlo technique. We also obtain the coarse-grained free energy from the Hamiltonian, as a function of two order parameters. The evolution of these order parameters is modeled by using Model C kinetics. As for the microscopic dynamics, the average domain size of the nonconserved order-parameter (staggered magnetization) field exhibits a power-law growth: [Formula: see text] at later times, irrespective of the mean value of the conserved order-parameter (composition) field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.