Abstract
We establish universality in the bulk for fixed exponential weights on the whole real line. Our methods involve first-order asymptotics for orthogonal polynomials and localization techniques. In particular, we allow exponential weights such as |x|2βg2(x)exp (−2Q(x)), where β>−1/2, Q is convex and Q′′ satisfies some regularity conditions, while g is positive, and has a uniformly continuous and slowly growing or decaying logarithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.