Abstract

A general theory of preparational uncertainty relations for a quantum particle in one spatial dimension is developed. We derive conditions which determine whether a given smooth function of the particle’s variances and its covariance is bounded from below. Whenever a global minimum exists, an uncertainty relation has been obtained. The squeezed number states of a harmonic oscillator are found to be universal: no other pure or mixed states will saturate any such relation. Geometrically, we identify a convex uncertainty region in the space of second moments which is bounded by the inequality derived by Robertson and Schrödinger. Our approach provides a unified perspective on existing uncertainty relations for a single continuous variable, and it leads to new inequalities for second moments which can be checked experimentally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.