Abstract
Detailed molecular dynamics simulations of Lennard-Jones ellipsoids have been carried out to investigate the emergence of criticality in the single-particle orientational relaxation near the isotropic–nematic (IN) phase transition. The simulations show a sudden appearance of a power-law behavior in the decay of the second-rank orientational relaxation as the IN transition is approached. The simulated value of the power-law exponent is 0.56, which is larger than the mean-field value (0.5) but less than the observed value (0.63) and may be due to the finite size of the simulated system. The decay of the first-rank orientational time correlation function, on the other hand, is nearly exponential but its decay becomes very slow near the isotropic–nematic transition. The zero-frequency rotational friction, calculated from the simulated angular velocity correlation function, shows a marked increase near the IN transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.