Abstract

We experimentally study quasi-two-dimensional dilute granular flow around intruders whose shape, size, and relative impact speed are systematically varied. Direct measurement of the flow field reveals that three in-principle independent measurements of the nonuniformity of the flow field are in fact all linearly related: (1) granular temperature, (2) flow-field divergence, and (3) shear-strain rate. The shock front is defined as the local maxima in each of these measurements. The shape of the shock front is well described by an inverted catenary and is driven by the formation of a dynamic arch during steady flow. We find universality in the functional form of the shock front within the range of experimental values probed. Changing the intruder size, concavity, and impact speed only results in a scaling and shifting of the shock front. We independently measure the horizontal lift force on the intruder and find that it can be understood as a result of the interplay between the shock profile and the intruder shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.