Abstract

The low-temperature thermodynamics of near-extremal rotating black holes has recently been revisited to incorporate one-loop contributions that are dominant in this regime. We discuss these quantum corrections to the gravitational path integral for asymptotically Anti de-Sitter black holes in four and five dimensions. In four dimensions we explicitly consider Kerr-AdS4, Kerr-Newman-AdS4 and the rotating black hole in N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 gauged supergravity with two scalars and two electric charges turned on. In five dimensions we explicitly address the asymptotically flat Myers-Perry black hole and the Kerr-AdS5 black hole. In every case we find that tensor modes contribute 32logTHawking\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\frac{3}{2}\\log {T}_{\ extrm{Hawking}} $$\\end{document} to the low-temperature thermodynamics. We identify the root cause of this universality in two facts: (i) the universal presence of a SL(2, ℝ) subgroup of isometries in the near-horizon geometry and (ii) a set of cancellations in the Lichnerowicz operator. We show that these two conditions hold for near-extremal black holes in asymptotically flat and asymptotically AdS spacetimes of various dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.