Abstract

Quantifying the efficiency of random target search strategies is a key question of random walk theory, with applications in various fields. If many results do exist for recurrent processes, for which the probability of eventually finding a target in infinite space-so called hitting probability-is one, much less is known in the opposite case of transient processes, for which the hitting probability is strictly less than one. Here, we determine the universality classes of the large distance behavior of the hitting probability for general d-dimensional transient jump processes, which we show are parametrized by a transience exponent that is explicitly given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.