Abstract

We investigate, using the noise reduction technique, the asymptotic universality class of the well-studied nonequilibrium limited mobility atomistic solid-on-solid surface growth models introduced by Wolf and Villain (WV) and Das Sarma and Tamborenea (DT) in the context of kinetic surface roughening in ideal molecular beam epitaxy. We find essentially all the earlier conclusions regarding the universality class of DT and WV models to be severely hampered by slow crossover and extremely long-lived transient effects. We identify the correct asymptotic universality class(es) that differs from earlier conclusions in several instances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call