Abstract

We study the probability distribution function of the ground-state energies of the disordered one-dimensional Ising spin chain with power-law interactions using a combination of parallel tempering Monte Carlo and branch, cut, and price algorithms. By tuning the exponent of the power-law interactions we are able to scan several universality classes. Our results suggest that mean-field models have a non-Gaussian limiting distribution of the ground-state energies, whereas non-mean-field models have a Gaussian limiting distribution. We compare the results of the disordered one-dimensional Ising chain to results for a disordered two-leg ladder, for which large system sizes can be studied, and find a qualitative agreement between the disordered one-dimensional Ising chain in the short-range universality class and the disordered two-leg ladder. We show that the mean and the standard deviation of the ground-state energy distributions scale with a power of the system size. In the mean-field universality class the skewness does not follow a power-law behavior and converges to a nonzero constant value. The data for the Sherrington-Kirkpatrick model seem to be acceptably well fitted by a modified Gumbel distribution. Finally, we discuss the distribution of the internal energy of the Sherrington-Kirkpatrick model at finite temperatures and show that it behaves similar to the ground-state energy of the system if the temperature is smaller than the critical temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.