Abstract

The ion irradiation technique is utilized to modify the surface structure of transition metal oxides (TMOs), including SrTiO3 and TiO2. After low-energy Ar+ ion bombardment, oxygen vacancies are introduced into the TMO surface layer, and their resistance decreases with increasing irradiation time. For the two oxides, the temperature-dependent resistivity exhibits different conducting behaviors. Due to the generation of an electron-doped quasi-2D surface layer, the voltage signals of the inverse Rashba–Edelstein effect are extracted in the ion-irradiated TMO with ferromagnetic permalloy films, and the spin transport parameters are respectively calculated from the ferromagnetic resonance measurement data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.