Abstract

By investigating the topology of chaotic solutions to the generalized Moore and Spiegel equations, we address the question how the solutions of nonlinear dynamical systems are dependent on the nature of the nonlinearity. In these generalized jerk equations, the single nonlinear term has a parity which depends on unu̇. The system has an inversion symmetry when n is even and no symmetry property when n is odd. It is shown that the topology of chaotic solutions only depends on the parity of n, that is, on the symmetry properties and not on the degree of nonlinearity. The value of n only affects the possibility to develop the chaotic solution, that is, to increase the number of unstable periodic orbits within the attractor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.