Abstract

We present a universal strategy for the facile synthesis of degradable and electroactive block copolymers and organogels (DEBCGs) based on aniline oligomers and polyesters in a two-step approach, here exemplified by the preparation of a series of DECBCGs based on aniline tetramer (AT) and poly(ε-caprolactone) (PCL). Polyesters with an aniline dimer (AD) segment were first obtained by controlled ring-opening polymerization (ROP) of ε-caprolactone initiated by the amine group of AD with or without 2,2-bis(ε-caprolactone-4-yl) propane (BCP). The postpolymerization modification via an oxidative coupling reaction between AD and a polyester was then used to form the electroactive segment AT in the copolymers or organogels. The molecular weight and conductivity of the block copolymers and organogels were controlled by the AT content. The chemical structure, electroactivity, and thermal properties of DEBCGs were investigated by FT-IR, NMR, SEC, UV, cyclic voltammetry, TGA, and DSC. Our general strategy for the synthesis of DECBCGs avoids the multiple step reactions and low efficiency involved in previous work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.