Abstract

Spin-orbit coupling in thin HgTe quantum wells results in a relativistic-like electron band structure, making it a versatile solid state platform to observe and control nontrivial electrodynamic phenomena. Here we report an observation of universal terahertz (THz) transparency determined by fine-structure constant $\ensuremath{\alpha}\ensuremath{\approx}1/137$ in 6.5-nm-thick HgTe layer, close to the critical thickness separating phases with topologically different electronic band structure. Using THz spectroscopy in a magnetic field we obtain direct evidence of asymmetric spin splitting of the Dirac cone. This particle-hole asymmetry facilitates optical control of edge spin currents in the quantum wells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.