Abstract

Background: The CRISPR/Cas13a system offers the advantages of rapidity, precision, high sensitivity, and programmability as a molecular diagnostic tool for critical illnesses. One of the salient features of CRISPR/Cas13a-based bioassays is its ability to recognize and cleave the target RNA specifically. Simple and efficient approaches for RNA manipulation would enrich our knowledge of disease-linked gene expression patterns and provide insights into their involvement in the underlying pathomechanism. However, only a few studies reported the Cas13a-based reporter system for in vivo molecular diagnoses. Methods: A tiled crRNA pool targeting a particular RNA transcript was generated, and the optimally potential crRNA candidates were selected using bioinformatics modeling and in vitro biological validation methods. For in vivo imaging assessment of the anti-GBM effectiveness, we exploited a human GBM patient-derived xenograft model in nude mice. Results: The most efficient crRNA sequence with a substantial cleavage impact on the target RNA as well as a potent collateral cleavage effect, was selected. In the xenografted GBM rodent model, the Cas13a-based reporter system enabled us in vivo imaging of the tumor growth. Furthermore, systemic treatments using this approach slowed tumor progression and increased the overall survival time in mice. Conclusions: Our work demonstrated the clinical potential of a Cas13a-based in vivo imaging method for the targeted degradation of specific RNAs in glioma cells, and suggested the feasibility of a tailored approach like Cas13a for the modulation of diagnosis and treatment options in glioma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call